为了顺利完成新学期的教学工作,需要制定一份详细的教案,教案是老师为了提高上课质量提前撰写的书面文稿,以下是述职范文网小编精心为您推荐的小学方程的教案5篇,供大家参考。
小学方程的教案篇1
教学目标
(一)教学知识点
1、用分式方程的数学模型反映现实情境中的实际问题。
2、用分式方程来解决现实情境中的问题。
(二)能力训练要求
1、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力。
2、认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型。
(三)情感与价值观要求
1、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣。
2、培养学生的创新精神,从中获得成功的体验。
教学重点
1、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型。
2、根据实际意义检验解的合理性。
教学难点
寻求实际问题中的等量关系,寻求不同的解决问题的方法。
教具准备
实物投影仪
投影片三张
第一张:做一做,(记作3、4、3 a)
第二张:例3,(记作3、4、3 b)
第三张:随堂练习,(记作3、4、3 c)
教学过程
Ⅰ、提出问题,引入新课
[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程。
接下来,我们就用分式方程解决生活中实际问题。
Ⅱ、讲授新课
出示投影片(3、4、3 a)
做一做
某单位将沿街的一部分房屋出租。每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9。6万元,第二年为10。2万元。
(1)你能找出这一情境的等量关系吗?
(2)根据这一情境,你能提出哪些问题?
[师]现在我们一块来寻求这一情境中的等量关系。
小学方程的教案篇2
教学内容:
教科书第12~13页,“回顾与”、“练习与应用”第1~4题。
教学目标:
1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
教学过程:
一、回顾与
1、谈话引入。
本单元我们学习了哪些内容?
你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?
在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
(等式与方程都是等式;等式不一定是方程,方程一定是等式。)
(含有未知数的等式是方程。)
(等式性质:)
(求方程中未知数的值的过程叫做解方程。)
同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。
单价、数量、总价之间有怎样的数量关系?
指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂
通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?
小学方程的教案篇3
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。
3.让学生初步体会利用等量关系分析问题的优越性。
教学重点:
1.让学生学习在计算公式中求各个量的方法。
2.让学生体会利用等量关系分析问题的优越性。
教具准备:
配套教与学的平台
教学过程:
一、复习引入
1.解方程
8x ÷ 2 =28 7(x+3)÷ 2 =28
2(x +17 )=40 6(5+x)÷ 2 =36
2.任意选择一题进行检验。
3.复习以前学过的公式:c=2(a+b)
c=4a s=ab s=ah÷2 s=(a+b)h÷2 ……
4.揭示课题:列方程解应用题(1)
[说明:复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。同时,适当地帮助学生整理与复习计算公式,这样导入新课比较自然,也有助于展开后续的学习。]
二、探究新知
1.出示例题:用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是多少厘米?
(1)学生尝试。(抽生板演)
(2)分析、交流
先设这个长方形的宽是x厘米,
再找等量关系来列方程。
(长方形的周长计算公式就是一个等量关系。)
(3)板书:解:设这个长方形的宽是x厘米。
2(8 +x )=28
8+x =14
x =6
答:这个长方形的宽是6厘米。
(4)比较算术与方程的解法。(建议学生,选择方程的方法。)
(5)检验。
2.补充例题:一块三角形土地的面积是900平方米,高36米,它的底边长多少米?
问:(1)这道题已知条件是什么?要求什么?
(2)能不能直接用三角形的面积计算公式算出高。
(3)可以利用三角形的面积计算公式列方程,未知数高怎样表示?
学生练习并交流。
3.小结:根据计算公式列方程解应用题。
[说明:让学生通过尝试、分析、交流、比较的探究活动,进一步体会用方程解的优越性。探究活动开始,先让学生尝试练习,学生会出现方程和算术两种解法;后小组比较、大组交流,让学生自己来解决问题。其主要目的是通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。]
三、巩固练习
1.只列方程不求解
(1)有一个长方形的面积是3600㎡,宽是40m,长应是多少米?
(2)已知长方形的周长是26厘米,它的长是8厘米,它的宽应是多少厘米?
(3)已知正方形的周长是100厘米,它的边长是多少厘米?
2.练一练:列方程解应用题
(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?
(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?
(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?
(学生练习并交流。)
3.总结:列方程解应用题的一般步骤。
四、课堂总结
1.通过这堂课的学习,你有什么收获?还有什么问题?
2.布置作业:练习册
小学方程的教案篇4
教材分析
课标对本节内容的要求:
⑴能从现实生活中发现并提出简单的数学问题;⑵能探索出解决问题的有效方法,并试图寻找其他方法;⑶在解决问题的活动中初步学会与他人合作;⑷能表达解决问题的过程,并尝试解释所得的结果;⑸具有回顾与分析解决问题的意识。概括归纳就是⑴培养学生发现数学问题的意识;⑵重视学生解决问题的过程,培养学生形成解决问题的基本策略;⑶培养学生与他人合作的意识;⑷培养学生形成评价与反思的意识。
本节内容与前后教材内容的逻辑联系:
学习本节内容是在学生学习了用字母表示数量关系、方程的意义、等式的基本性质和解方程的知识后,利用列方程来解决实际问题。
学习本节内容的作用:
⑴进一步拓展学生解决实际问题的思路和方法,掌握用列方程解决问题的思考方法和特点,初步体会列方程解决问题的优越性。⑵使学生进一步感受数学与现实生活的联系,培养学生初步的代数思想,发展学生利用列方程解决一些简单实际问题的应用意识。⑶培养学生根据具体情况,灵活选择算法的能力。
学情分析
1、 教师主观分析:
本班共有18名同学,学习基础较好,能独立思考,具有一定的分析问题和解决问题的能力的同学占到全班的33℅ ,学习基础薄弱,数学基础知识、基本技能不能完全理解和掌握,缺乏分析问题和解决问题的能力的同学占到39℅,其他同学学习水平中等偏下。
2、 学生认知发展水平分析:
大多数同学对学过的基础知识和基本技能基本掌握,对于简单的实际问题能够解答。本节课的教学重点应放在引导学生分析并找出等量关系,学会解形如(a+x)b=c这样的新方程。教师在教学时应采用“先扶着学生走,再让学生试着走,最后让学生独立走”的教学策略。
3、 学生认知的障碍点:
①如何去分析、找出数量间存在的等量关系,然后依据等量关系列方程解应用题。②如何解形如(a+x)b=c这样的新方程。
教学目标
1、知识与技能:
能够结合具体情境使学生掌握根据两积之和的数量关系列方程。②会把方程中含有小括号的式子看作一个整体来求解的思路和方法。③使学生通过学习两积之和的数量关系来理解两积之差、两商之和的数量关系,培养学生举一反三的能力。
2、数学思考:
学生能够正确地审题、分析题意,思考、分析找出两积之和的数量关系。②经历算法多样化的过程,运用迁移类推的方法解决实际生活中的数学问题。
3、情感与态度:
在观察、思考、探究、交流中,在解决实际问题的过程中,体会数学与现实生活的密切联系,了解数学的价值,增进学生学好数学的信心。
小学方程的教案篇5
有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?
分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。
设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。
解:设有胶鞋x双,则有布鞋(46-x)双。
7.5x-5.9(46-x)=10,
7.5x-271.4+5.9x=10,
13.4x=281.4,
x=21。
答:胶鞋有21双。
分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以
答:袋中共有74个球。
在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。
例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[
分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
80x-40=(30x+40)×2,
80x-40=60x+80,
20x=120,
x=6(座)。
分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)×80=(2x+40)×30,
80x-3200=60x+1200,
20x=4400,
x=220(米3)。
由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。
同理,也可设有红砖x米3。留给同学们做练习。
例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?
分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程
x-10=[(x-10)×2-9]×5,
x-10=(2x-29)×5,
x-10=10x-145,
9x=135,
x=15(个)。
例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:
还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?
分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,
0×7+1×5+2×4+6×(x-7-5-4)
= 5+8+6×(x-16)
= 6x-83,
也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,
= 3×(x-8)+24+36+10
= 3x+46。
由此可得方程
6x-83=3x+46,
3x=129,
x=43(人)。
例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。
分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程
4÷(150-3x)=8÷(150-x),
4×(150-x)=8×(150-3x),
600-4x=1200-24x,
20x=600,
x=30(千克)。
练习23
还剩60元。问:甲、乙二人各有存款多少元?
有多少溶液?
3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?
4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?
5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?
含金多少克?
7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?
会计实习心得体会最新模板相关文章: