教案是教师们针对自己的教学目标所制定出的书面文体,教案写的时候,注意要以教学目标为主题展开写作,以下是述职范文网小编精心为您推荐的高中数学余弦定理教案8篇,供大家参考。
高中数学余弦定理教案篇1
一、教学内容分析
人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学习情况分析
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
三、设计思想
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。
五、教学重点与难点
教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
六、教学过程:
七、教学反思
本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。
高中数学余弦定理教案篇2
一)教材分析
(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用
难点:利用向量知识证明定理
(二)教学目标
(1)知识目标:
①要学生掌握正余弦定理的推导过程和内容;
②能够运用正余弦定理解三角形;
③了解向量知识的应用。
(2)能力目标:提高学生分析问题、解决问题的能力。
(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。
(三)教学过程
教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。
教学过程分如下几个环节:
教学过程课堂引入
1、定理推导
2、证明定理
3、总结定理
4、归纳小结
5、反馈练习
6、课堂总结、布置作业
具体教学过程如下:
(1)课堂引入:
正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?
(2)定理的推导。
首先提出问题:rtΔabc中可建立哪些边角关系?
目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:
①引导学生从sina、sinb的表达式中发现联系。
②继续引导学生观察特点,有a边a角,b边b角;
③接着引导:能用c边c角表示吗?
④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?
发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。
这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。
第二步证明定理:
①用向量方法证明定理:学生不易想到,设计如下:
问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破
实践:师生共同完成锐角三角形中定理证明
独立:学生独立完成在钝角三角形中的证明
总结定理:师生共同对定理进行总结,再认识。
在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。
在定理总结之后,教师布置思考题:定理还有没有其他证法?
通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。
(3)例题设置。
例1△abc中,已知c=10,a=45°,c=30°,求b.
(学生口答、教师板书)
设计意图:①加深对定理的认识;②提高解决实际问题的能力
例2△abc中,a=20,b=28,a=40°,求b和c.
例3△abc中,a=60,b=50,a=38°,求b和c.其中①两组解,②一组解
例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。
可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。
设计意图:
①增强学生对定理灵活运用的能力
②提高分析问题解决问题的能力
③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。
(4)归纳小结。
借助多媒体动态演示:图表
使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。
这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。
(5)反馈练习:
练习①△abc中,已知a=60,b=48,a=36°
②△abc中,已知a=19,b=29,a=4°
③△abc中,已知a=60,b=48,a=92°
判断解的情况。
通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。
(6)课堂总结,布置作业。
高中数学余弦定理教案篇3
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.
教学重难点
教学重点:熟练运用定理.
教学难点:应用正、余弦定理进行边角关系的相互转化.
教学过程
一、复习准备:
1.写出正弦定理、余弦定理及推论等公式.
2.讨论各公式所求解的三角形类型.
二、讲授新课:
1.教学三角形的解的讨论:
①出示例1:在△abc中,已知下列条件,解三角形.
分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况.(a为锐角时)
②练习:在△abc中,已知下列条件,判断三角形的解的情况.
2.教学正弦定理与余弦定理的活用:
①出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求角的余弦.
分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.
②出示例3:在Δabc中,已知a=7,b=10,c=6,判断三角形的类型.
分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断
③出示例4:已知△abc中,,试判断△abc的形状.
分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.
三、巩固练习:
3.作业:教材p11b组1、2题.
高中数学余弦定理教案篇4
三维目标
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.
2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.
重点难点
教学重点:正弦定理的证明及其基本运用.
教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.
课时安排
1课时
教学过程
导入新课
思路1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如rt△abc中的边角关系,若∠c为直角,则有a=csina,b=csinb,这两个等式间存在关系吗?学生可以得到asina=bsinb,进一步提问,等式能否与边c和∠c建立联系?从而展开正弦定理的探究.
思路2.(情境导入)如图,某农场为了及时发现火情,在林场中设立了两个观测点a和b,某日两个观测点的林场人员分别测到c处有火情发生.在a处测到火情在北偏西40°方向,而在b处测到火情在北偏西60°方向,已知b在a的正东方向10千米处.现在要确定火场c距a、b多远?将此问题转化为数学问题,即“在△abc中,已知∠cab=130°,∠cba=30°,ab=10千米,求ac与bc的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习.
推进新课
新知探究
提出问题
1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?
2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系?
3由2得到的数量关系式,对一般三角形是否仍然成立?
4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它?
5什么叫做解三角形?
6利用正弦定理可以解决一些怎样的三角形问题呢?
活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的.高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.
关于任意三角形中大边对大角、小 边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在rt△abc中,设bc=a,ac=b,ab=c,根据锐角三角函数中正弦函数的定义,有ac=sina,bc=sinb,又sinc=1=cc,则asina=bsinb=csinc=c.从而在rt△abc中,asina=bsinb=csinc.
那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析.
如下图,当△abc是锐角三角形时,设边ab上的高是cd,根据任意角的三角函数的定义,有cd=asinb=bsina,则asina=bsinb.同理,可得csinc=bsinb.从而asina=bsinb=csinc.
(当△abc是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)
通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
asina=bsinb=csinc
上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠at;∠b,由三角形性质,得asin(π-a)=sina,所以仍有sina
正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.
讨论结果:
(1)~(4)略.
(5)已知三角形的几个元素(把三角形的三个角a、b、c和它们的对边a、b、c叫做三角形的元素)求其他元素的过程叫做解三角形.
(6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.
应用示例
例1在△abc中,已知∠a=32.0°,∠b=81.8°,a=42.9 cm,解此三角形.
活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠c,b,c.
此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠c,再利用正弦定理即可.
解:根据三角形内角和定理,得
∠c=180°-(∠a+∠b)=180°-(32.0°+81.8°)=66.2°.
根据正弦定理,得
b=asinbsina=42.9sin81.8°sin32.0°≈80.1(cm);
c=asincsina=42.9sin66.2°sin32.0°≈74.1(cm).
高中数学余弦定理教案篇5
一、说教材
(一)教材地位与作用
?余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了"边"与"角"的互化,从而使"三角"与"几何"产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标
根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:
⒈知识与技能:
掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形
⒉过程与方法:
在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒊情感、态度与价值观:
培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;
(三)本节课的重难点
教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
二、说学情
从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
三、说教法和学法
贯彻的指导思想是把"学习的主动权还给学生",倡导"自主、合作、探究"的学习方式。让学生自主探索学会分析问题,解决问题。
四、说教学过程
下面为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下五个环节展开:
环节⒈复习引入
由于本节课是余弦定理的第一课时,因此先领着学生回顾复习上节课所学的内容,采用提问的方式,找同学回答余弦定理的内容及公式,并且让学生回想公式推导的思路和方法,这样一来可以检验学生对所学知识的掌握情况,二来也为新课作准备。
环节⒉应用举例
在本环节中,我将给出两道典型例题
△abc的.顶点为a(6,5),b(-2,8)和c(4,1),求(精确到)。
已知三点a(1,3),b(-2,2),c(0,-3),求△abc各内角的大小。
通过利用余弦定理解斜三角形的思想,来对这两道例题进行分析和讲解;本环节的目的在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。
环节⒊练习反馈
练习b组题,1、2、3;习题1-1a组,1、2、3
在本环节中,我将找学生到黑板做题,期间巡视下面同学的做题情况,加以纠正和讲解;通过解决书后练习题,巩固学生当堂所学知识,同时教师也可以及时了解学生的掌握情况,以便及时调整自己的教学步调。
环节⒋归纳小结
在本环节中,我将采用师生共同总结-交流-完善的方式,首先让学生自己总结出余弦定理可以解决哪些类型的问题,再由师生共同完善,总结出余弦定理可以解决的两类问题:⑴已知三边,求各角;⑵已知两边和它们的夹角,求第三边和其他两个角。本环节的目的在于引导学生学会自己总结;让学生进一步体会知识的形成、发展、完善的过程。
环节⒌课后作业
必做题:习题1-1a组,6、7;习题1-1b组,2、3、4、5
选做题:习题1-1b组7,8,9.
基于因材施教的原则,在根据不同层次的学生情况,把作业分为必做题和选做题,必做题要求所有学生全部完成,选做题要求学有余力的学生完成,使不同程度的学生都有所提高。本环节的目的是让学生进一步巩固和深化所学的知识,培养学生的自主探究能力。
五、说板书
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
高中数学余弦定理教案篇6
一、单元教学内容
运算定律p——p
二、单元教学目标
1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的`价值,增强应用数学的意识。
三、单元教学重、难点
1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排
运算定律10课时
第1课时 加法交换律和结合律
一、教学内容:加法交换律和结合律p17——p18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方? 师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节 探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米) 你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验
写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。 全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。可以用符号来表示:?+☆=☆+?;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢? a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在( )里填上合适的数。
37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式? 学生独立列式,指名汇报。 汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”: (88+104)+96=192+96 =288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”: 88+(104+96)=88+200=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有
什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢? (a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律加法结合律
例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。
六、教学后记
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
高中数学余弦定理教案篇7
教学目标:
1.了解利用向量知识推导正弦定理;
2.掌握正弦定理并能运用正弦定理解斜三角形,并会利用计算器解决解斜三角形中复杂的计算问题;
3.会判定已知两边和其中一边的对角解斜三角形的解时一解、两解或无解;
4.通过利用向量证明正弦定理,了解向量的工具性和知识间的相互联系,体会事物之间是相互联系的辩证思想;
教学重点:正弦定理及其推导过程,正弦定理在三角形中的应用;
教学难点:正弦定理的向量法证明以及运用正弦定理解三角形时解的个数的判定.
教学方法:情景问题、启发引导
教学设计过程
(一)设置情境。
思考:现实生活中如何测得某湖对岸a、b两点之间距离。学生会很自然地构造直角三角形来解决。但是很多情况,受地理条件的限制,我们很难构造直角三角形,也就是在一般的三角形里我们如何求出ab的距离?我们能不能发现在三角形中还蕴涵着什么样边与角关系呢? #formattableid_5# 组织学生分组讨论,教师参与学生的讨论。(2-3钟)让学生汇报:通过对直角三角形的研究发现了什么结论。
直角三角形中存在等式:
小结:利用直角三角形中的这些边角关系对任给直角三角形的两边或一边一角可以求出这个三角形的其他边与其他角.这个式子在任意三角形中也是成立的,这就是我们今天要学的正弦定理.
(二)推导定理过程
1.学生思考:
1)在任意 中,3个向量 , , 间 满 足什么关系?
2)在 + + = 两边同乘以向量 ,有( + + ) .,这里的量 可否任意?又如何选择向量
3)由 + + = ,如何能形成数量积运算?
2.证明过程:如图,在锐角中 ,过 作单位向量 垂直于 ,则 与 的夹角为 与 的夹角为 。由向量的加法可得:
对上面向量等式两边同取与向量 的数量积运算,得到
同理,过点 作与 垂直的单位向量 ,可得
3.深入思考:1) 当 为钝角三角形时如何证得
2)正弦定理还有没有其它的方法证明?
3)观察正弦定理,利用正弦定理可以解什么类型的三角形问题?
4.小结:正弦定理可以解决两类三角形问题:
1)已知两角和任意一边,可以求出其他两边和一角;
2)已知两边和其中一边的对角,可以求出三角形的其他的边和角。
(三)例题分析
例1 在 中,已知 ,求 (保留两个有效数字)
解: 且
例2 在 中,已知 ,求 。
解:由 得
∵ 中 ∴ 为锐角 ∴
例3 在 中, ,求 的面积 。
解:首先可证明:
这组结论可作公式使用。
其次求 ,
∴由正弦定理
(四).练习巩固,加深理解。
(1)在 中,一定成立的等式是( )
. .
. .
(2)在 中,若 ,则 是( )
.等腰三角形 .等腰直角三角形 .直角三角形 .等边三有形
(3)在任一 中,
求证 :
证明:由于正弦定理:令 代入左边得:
(五)总结提炼
(1)三角形常用公式: ;
(2)正弦定理表示形式: ( 外接圆直径)
; 。
(3)正弦定理应用范围:①已知两角和任一边,求其他两边及一角。
②已知两边和其中一边对角,求另一边的对角。
③几何作图时,存在多种情况。如已知 、 及 ,
求作三角形时,要分类讨论,确定解的个数。
(六)巩固作业:
1 中, ,则 为( )
a 直角三角形 b 等腰直角三角形c 等边三角形 d 等腰三角形
2 在 中, 是 的
a 充分不必要条件 b 必要不充分条件 c 充要条件 d 既不充分也不必要条件
3在 中,已知 求 和 .
(七)板书设计:
高中数学余弦定理教案篇8
一、教材分析
?余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标
知识与技能:
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:
1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具 (以上均为命题教学的准备)
会计实习心得体会最新模板相关文章: