述职范文网 >教案大全

六年级数学比和比例教案6篇

提前制定好适合自己的教案是可以让我们在课堂上更加自信的,只有认真制定教案,我们的教学能力才会大大提高,下面是述职范文网小编为您分享的六年级数学比和比例教案6篇,感谢您的参阅。

六年级数学比和比例教案6篇

六年级数学比和比例教案篇1

教学目标:

1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、培养学生猜想与验证、观察与概括的能力。

4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。

教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

教学难点:自主探究比例的基本性质。

教学准备:投影片、练习纸

三案设计:

学案

一、自学质疑

[探究任务一] 比例的意义

1、投影出示几组比,让学生写出各组的比值,

二、比例的基本性质

教案

一、回顾旧知、孕伏新知:

1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?

(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?

2、 师板书题目:

(1)4:5 20:25 (2)0.6:0.3 1.8:0.9

(3)1/4: 5/8 3:7.5 (4)3:8 9:27

[评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]

二、丝丝入扣,深挖比例的意义

(一)认识意义

1、 指名口答每组中两个比的比值,在比例下方写上比值。

师问:你们有什么发现吗?(三组比值相等,一组不等)

2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25

师:最后一组能用等号连接吗?为什么?

数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)

[评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]

3、同学们想研究比例的哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

板演:表示两个比相等的式子叫做比例。

学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

5、质疑:有三个比,他们的比值相等,能组成比例吗?

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]

(二)练习

1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第1题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

(1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

(2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、认识比例各部分的名称

(1)板书出示: 4 : 5

前项 后项

(2)板书出示:4 : 5 = 20 : 25

内项外项

(3)如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:4/5=20/25

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?

三、探究比例的基本性质

1、投影出示:

你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3

或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6: 3=10:5……

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证猜想:

师:这是你的猜想,有了猜想还必须验证。

(1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)

(2)学生任意写一个比例并验证。师巡视指导。

师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?

板书:1/2 ∶1/8 = 2∶ 8

众生沉思片刻,纷纷发现等式不成立。

生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。

师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

[及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]

四、反馈提升

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9 1.4 :2 和 5 :10

让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ②20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

①1.5:3=( ):4

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、课后留白

同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。

(1)人高和影长的比是( )

树高和影长的比是( )

(2)人高和树高的比是( )

人影长和树影长的比是( )

你有什么发现?

为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。

[设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]

六、全课总结:这节课你有什么收获?

(最后的机会仍然给学生,学生通过清晰的板书总结的很到位)

六年级数学比和比例教案篇2

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

六年级数学比和比例教案篇3

教学目标:

1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。

2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

教学过程:

一、谈话导入

1. 出示苹果、梨、橘子的图片 问:起一个总的名称是什么?

2. 出示:仿照第一题填空

(1)时间:3小时 20分 2小时45分

(2)总价:5元 ( ) ( )

(3)( ):6千克 800克 3吨350克

填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?

二、学习新课

(一)相关联的量

教师做实验,向弹簧称上加钩码问:

(1) 这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?

指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。

追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?

(二)学习成正比例的量

1、出示19页表格

观察图像,填表,回答下面的问题:

(1) 表中有哪两个相关联的量?

(2) 正方形的周长是怎样随着边长的变化而变化的?

(3) 正方形的面积是怎样随着边长的变化而变化的?

(4)它们的变化规律相同吗?

小组讨论交流汇报

2、20页第2题

3、正比例的意义

(1)例1和例2有什么共同点?(两种相关联的量,比值一定)

师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。

问:现在你知道什么叫成正比例的量了吗?自由说说 指生回答 阅读课本

师板书关系式:y/x=k(一定)

(2) 那么,要判断两种量是否成正比例的量该看什么呢?

三、 巩固提高:19页说一说。

四、 全课小结

六年级数学比和比例教案篇4

教学目标:

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,设疑激趣

同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?

学生思考回答(挖掘学生生活经验)

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构

活动一:探究比例的意义

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?

(1)猜测

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96

我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。 你能说出一个比例吗?说一说你是怎么理解比例的?

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4

活动二:探究比例的基本性质

1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?

2.小组内验证猜测结果

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)

三、强化训练、应用拓展

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1) 6:9和 9:12

(2)1/2:1/5和5/8:1/4

(3)1.4:2 和 7:10

(4) 0.5:0 .2和10:4

2.判断。

(1)表示两个比相等的式子叫做比例 ( )

(2)0.6:1.6与3:4能组成比例 ( )

(3)如果4a=5b,那么a:b=4:5( )

3.填空

5:2=80:( )

2:7=( ):5

1.2:2.5=( ):4

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。

4.写出比值是5的两个比,并组成比例

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验

通过这节课的学习你有什么收获?

六年级数学比和比例教案篇5

教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

正比例应用题教学设计

三元坊小学梁智丹

教学内容:人教版23页至24页例1以及相应的做一做。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、 谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、 新课教学:

先来研究这样一个问题。

1、 出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、 分析解答应用题

(1) 请一位同学读一读题目

(2) 这道题要求什么?已知什么条件?

(3) 能不能用以前学过的方法解答?

(4) 让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、 激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、 探讨新知

1、 提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1) 题目中相关联的两种量是________和________。

(2) ________一定,_________和_________成_______比例关系。

(3) ______行驶的_____ 和 _____的 ________相等。

2、 学生自学例题后小组讨论。

3、 组间交流:小组代表把讨论结果在班内交流

4、 学生尝试解答后评价(指名学生板演)

5、 怎样检验?把检验过程写出来。

6、 概括总结

(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

(2) 明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1. 分析判断

2. 找出列比例式所需的相等关系

3. 设未知数列等式

4. 求解

5. 检验写答语

四、 练习提高

1、 基本练习

(1)例题改编

① 如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

② 让学生解答改编后的应用题,集体订正。

③ 小结 :比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、实践运用

(1)汇报数据:刚才我们上课时提到怎教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

六年级数学比和比例教案篇6

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:课件

教学过程:

一、 课前预习

预习书19---21页内容

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

二、展示与交流

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

会计实习心得体会最新模板相关文章:

三年级数学上册数学教案模板7篇

四年级数学上册数学教案最新8篇

北师大版小学数学一年级下册教案8篇

人教版七年级上册数学4.2教案7篇

苏教版数学一年级上册教案5篇

四年级下册数学教案最新7篇

四年级下册数学教案7篇

三年级数学上册数学教案8篇

七年级上册数学4.2教案7篇

二年级数学长度单位教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    11063

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。